Vibrational Spectra and Force Constants of Symmetric Tops, IL [1]

The v₃ Fundamental of Unstable H₃SnCl, H₃SnBr and H₃SnI Studied by High Resolution FT Spectroscopy of Monoisotopic Species

Hans Bürger and Martina Betzel FB 9 – Anorganische Chemie, Universität – Gesamthochschule, Wuppertal

Z. Naturforsch. 40 a, 989-994 (1985); received August 3, 1985

Fourier Transform far infrared spectra of unstable stannyl chloride, bromide and iodide have been measured in the gas phase with a resolution of $0.04~\rm cm^{-1}$. At pressures below 10 mbar, their lifetimes at 0 °C in preconditioned cells were found to be $10-30~\rm min$. The v_3 fundamentals and hot bands of the series $(n+1)v_3-nv_3$ have been observed. Rotational J structure has been resolved for monoisotopic samples, and band origins v_3^0 , anharmonicity constants x_{33} , α_3^B and D_J^0 values have been determined from the rovibrational analyses. The following v_3^0 values were obtained: $H_3^{116} \rm Sn^{35} Cl$ 375.470 (5), $H_3^{116} \rm Sn^{37} Cl$ 367.689 (6), $H_3^{116} \rm Sn^{79} Br$ 263.566 (5) and $H_3^{116} \rm Sn^{170} Br$ 263.566 (5) and

1. Introduction

Only very few reports concern the synthesis and characterization of the unstable stannyl halide species H₃SnCl, H₃SnBr and H₃SnI [2-4]. These species were prepared at low temperature from SnH₄ and the respective hydrogen halides, but due to their pronounced instability even at low temperature and in the gas phase at low pressure, vibrational spectra unambiguously attributable to these species could not be obtained. Convincing evidence for their existence comes from the ¹H NMR [4] and mass spectra [3], and some ground state constants were determined by microwave spectroscopy [5-7]. It was reported that the mw experiments performed at low temperature required continuous resampling, and lifetimes of a few minutes were noted.

The increase in sensitivity and precision of infrared spectroscopy by FT techniques and diode lasers since the early seventies makes an investigation of the gas phase IR spectra of these molecules seem promising. As these investigations were aimed at resolving rovibrational structure, the use of monoisotopic samples was compulsory because both tin (0.95% 112Sn, 0.65% 114Sn, 0.34% 115Sn, 14.24% 116Sn, 7.57% 117Sn, 24.01% 118Sn, 8.58% 119Sn, 32.97% 120Sn, 4.71% 122Sn, 5.98% 124Sn) and the halogens (75.5%

Reprint requests to Prof. Dr. H. Bürger, Universität-Gesamthochschule, Gaußstr. 20, D-5600 Wuppertal 1.

 35 Cl, 24.5% 37 Cl; 50.5% 79 Br, 49.5% 81 Br) are composed of several isotopes which would cause inextricable congestion with eventually complete loss of rotational structure for the resolution $(4 \times 10^{-2} \text{ cm}^{-1})$ available to us. This requirement, however, excluded a continuous flow of stannyl halides through the cell, and we were forced to look for possibilities to record extended high resolution spectra of single batches.

This technique has been applied recently to the v_1/v_4 band of $H_3^{116} \mathrm{Sn}^{35} \mathrm{Cl}$ appearing in a region, $\sim 1900~\mathrm{cm}^{-1}$, where additional blending by strong absorptions of $\mathrm{SnH_4}$ occurred [8]. Such interference with $\mathrm{SnH_4}$ absorptions does not affect the two lowest-lying fundamentals v_3 and v_6 of stannyl halides, but these vibrations, which are less intense in the IR than v_1/v_4 and v_2/v_5 , fall into spectral regions $(200-400~\mathrm{cm}^{-1}$ and $400-500~\mathrm{cm}^{-1}$ respectively) which are more difficult to study.

In spite of the great experimental difficulties we decided to study first the v_3 fundamental which is associated with the tin-halogen stretching motion and which is not expected to be perturbed. The molecular parameters of the $v_3 = 1$ state reflect tin-halogen bonding and may be compared with those of the corresponding trimethyl tin halides [9] and the series of silyl [10-12] and germyl halides [13] recently studied in our laboratory.

The tin-halogen stretching vibrations are expected to occur close to 400, 250 and 200 cm⁻¹ for chloride, bromide, and iodide, respectively. While a

0340-4811 / 85 / 1000-0989 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

pair of bands at 383 and 370 cm⁻¹ in the gas phase spectrum of H₃SnCl was assigned to v_3 [3], an absorption at 283 cm⁻¹ observed in the solid state has been attributed to v SnCl [2]. On the other hand, a frequency $v_3 \cong 80$ cm⁻¹ has been deduced for H₃SnI from the vibrational satellites of the rotational lines [7].

In the following we report on our attempts to measure and to analyze the IR spectrum with a resolution of $\sim 4 \times 10^{-2} \, \mathrm{cm}^{-1}$ of gaseous $\mathrm{H_3^{116}Sn^{35}Cl}$, $\mathrm{H_3^{116}Sn^{37}Cl}$, $\mathrm{H_3^{116}Sn^{79}Br}$ and $\mathrm{H_3^{116}SnI}$ in the region of the ν_3 fundamental.

2. Experimental

The synthesis of H₃SnCl, H₃SnBr and H₃SnI was achieved from 116SnH₄ (98% 116Sn) and the respective hydrogen halides H35Cl (99.3% 35Cl), H37Cl (98.2% ³⁷Cl), H⁷⁹Br (98.6% ⁷⁹Br) and HI as previously described [8]. H₃SnCl and H₃SnBr were prepared in a small trap connected to the absorption cell which was held at -78° . Typically, 1 mmol SnH₄ and 1 mmol HCl and HBr were reacted for 30 and 10 min, respectively, volatile material pumped off and the halides evaporated into the absorption cell which was held at 0 °C. H₃SnI which is even less stable than the chloride and bromide was directly prepared in the absorption cell by reacting 1 mmol SnH₄ and 2 mmol HI at -80° for 5 min. After removal of volatile material the cell was brought to ~0 °C within 10 min, and blocks of interferograms were measured during warm-up. After 10 min at 0°, all H₃SnI had decomposed.

A double jacketed 17 cm stainless steel cell equipped with polythene windows was employed, precooled N₂ being used to adjust the temperature between -5 and 0° . The total pressure in the cell was of the order of 10 mbar. A Nicolet Series 8000 vacuum interferometer operating with an unapodized resolution of 0.035 cm⁻¹ was used. It was equipped with a 6 µ mylar beam splitter for the investigation of H₃SnCl and H₃SnBr while a 25 µ mylar beam splitter was employed for H₃SnI. A Cu: Ge detector was used for the spectral region > 340 cm⁻¹, while a bolometer was used in the region < 350 cm⁻¹. Both detectors were operated at 4.2 K. Due to the instability of the molecules in question, the maximum measuring time was 5, 15 and 10 min for chloride, bromide and iodide, respectively.

Calibration was with H_2O rotational lines [14], the absolute wave number accuracy of peakfinder-evaluated lines is better than $\pm 2 \times 10^{-3}$ cm⁻¹.

3. Results

In analogy to the related molecules H_3GeX [13] the v_3 fundamental of the prolate symmetric top molecules H_3SnX , $A_0 \sim 2.1$ cm⁻¹, $B_0 \sim 0.11$, 0.056 and 0.038 cm⁻¹, X = Cl, Br, and I respectively, should exhibit PQR structure. Due to small α_3^4 values ($< 2 \times 10^{-3}$ cm⁻¹) the P and R branches are expected to consist of J clusters which cannot be further resolved into K lines with the available resolution.

The v_3 transitions are accompanied by hot bands, of which those belonging to the series $(n + 1)v_3 - nv_3$ are most intense. At 270 K, the following Boltzmann factors relative to $v_3 = 1$ are calculated:

	n = 1	n = 2
H ₃ ¹¹⁶ Sn ³⁵ Cl	0.27	0.06
H ₃ ¹¹⁶ Sn ³⁵ Cl H ₃ ¹¹⁶ Sn ³⁷ Cl	0.28	0.06
$H_3^{116}Sn^{79}Br$ $H_3^{116}Sn^{127}I$	0.49	0.18
$H_3^{116} Sn^{127} I$	0.66	0.32

Both Q branches and J clusters in the P and R branches of the $2v_3 - v_3$ hot bands are clearly evident in all spectra, Figs. 1-3, and these hot bands have also been included in the band contour simulation. The hot band $3v_3 - 2v_3$ has been observed only in the best spectrum, Figure 2.

In the absence of resolvable K structure, the observed spectra can be analyzed with polynomial least squares methods. Observed P and R branch peaks were fitted to the equation

$$v^{P, R} = a + bm + cm^2 + dm^3$$

with

m = J'' + 1 in the R and m = -J'' in the P branch.

The coefficients a to d are related to molecular parameters according to

$$a = v_0 + [(A' - A'') - (B' - B'')]K^2,$$

$$b = B' + B'' - 2D_{JK}K^2,$$

$$c = B' - B'' - (D'_J - D''_J) \cong -\alpha^B,$$

$$d = -2(D'_J + D''_J).$$



Fig. 1. Experimental (lower trace) and simulated spectrum (upper trace) of $H_3^{116} Sn^{35} Cl$ in the v_3 region.

Table 1. Coefficients of the polynomials $v^{P,R} = a + bm + cm^2 + dm^3$ and standard deviations (cm⁻¹) of stannyl halides.

		а	b	$c \times 10^4$	$d \times 10^8$	$\sigma \times 10^3$
H ₃ ¹¹⁶ Sn ³⁵ Cl	$2 \frac{v_3}{v_3} - v_3$	375.465(1) 373.232(2)	0.22035(2) 0.21930(3)	-4.778 (2) -4.689 (5)	-14.2(4) -	3.3 5.4
H ₃ ¹¹⁶ Sn ³⁷ Cl	$2\frac{v_3}{v_3} - v_3$	367.684(2) 365.553(5)	0.21143(3) 0.21013(6)	-4.474 (4) -4.455(10)	-12.5(6) -	5.0 12.9
H_3 ¹¹⁶ Sn ⁷⁹ Br	$2\frac{v_3}{v_3} - v_3$	263.561(1) 262.377(3)	0.11332(2) 0.11308(5)	-1.756 (2) -1.702 (8)	- 4.1(2) -	4.0 6.0
$H_3^{116}Sn^{127}I$	$v_3 \\ v_3$	209.754(2) 209.756(3)	0.07524(4) 0.07509(3)	-0.965 (4) -0.973 (4)	- 3.0(5) -	5.5 6.7

H₃SnCl

The spectrum of $H_3^{116}Sn^{35}Cl$ is illustrated in Fig. 1 and may be compared with a contour simulation including v_3 and $2v_3-v_3$ obtained with the parameters listed in Table 2. An essentially identical spectrum was obtained for the ^{37}Cl species, though due to the energy cut-off by the Cu:Ge detector the low-frequency end was even more noisy than for $H_3^{116}Sn^{35}Cl$. $^{QP}/^{QR}$ (J'') clusters were assigned up to J'' = 73/78 and 77/72 for v_3 of $H_3^{116}Sn^{35}Cl$ and $H_3^{116}Sn^{37}Cl$ respectively; for $2v_3 - v_3$, J''_{max} was 79/76 and 69/75 respectively. In the polynomial fit, some peaks which were broad or apparently blended were given lower weight.

For the hot bands, the number of data was considerably smaller than for v_3 because of the lower

intensity. Therefore it was physically not meaningful to expand the polynomial beyond the quadratic term. The coefficients of the polynomial fits are set out in Table 1. Lists of observed and calculated frequencies of peaks have been deposited as supplementary material [15].

H₃SnBr

The spectrum of $H_3^{116}Sn^{79}Br$ and its simulation including v_3 and $2v_3 - v_3$ are shown in Figure 2. Peaks of v_3 and $2v_3 - v_3$ were assigned and subjected to a polynomial fit for $J'' \le 99/130$ and 69/28 ($^{Q}P/^{Q}R$) respectively. As for H_3SnCl , the cubic coefficient was not determined significantly for $2v_3 - v_3$. The coefficients of the polynomials are listed in Table 1.

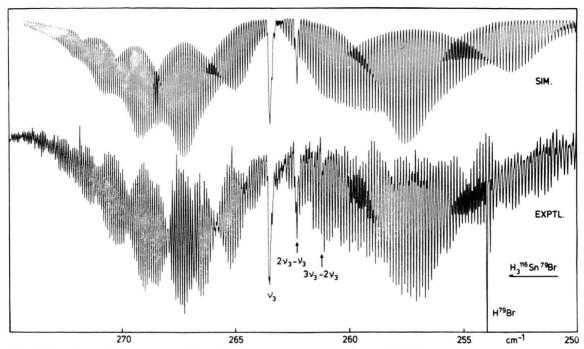


Fig. 2. Experimental (lower trace) and simulated spectrum (upper trace) of $H_3^{116} Sn^{79} Br$ in the v_3 region.

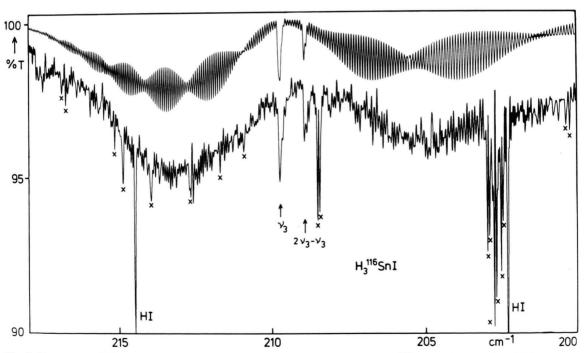


Fig. 3. Experimental (lower trace) and simulated spectrum (upper trace) of $H_3^{116} SnI$ in the ν_3 region. Major rotational lines of $H_2 O$ are marked.

Table 2. Molecular parameters of stannyl halides (cm⁻¹).

	$H_3^{116}Sn^{35}Cl$	$H_3^{116} Sn^{37} Cl$	$H_3^{116} Sn^{79} Br$	$H_3^{116}SnI$
From mw spectroscopy	[5]		[6]	[7]
B_0 $D_{JK}^0 \times 10^7$ $(B_3 - B_0) \times 10^4$	- 0.110431(21) 	-	0.0567469(3) 2.30(13)	0.0376147(3) 1.37(10) -0.964(10)
From present work v_0^0 x_{33} x_{33} x_{33} x_{34} x_{35} x_{35} x_{35} x_{36} $x_$	375.470(5) -1.117(2) 0.11041(1) -4.778(2) -8 3.55(10) 3.8	367.689(6) -1.066(5) 0.10594(2) -4.474(4) 3.13(15) 3.5	263.566(5) -0.592(3) 0.05675(1) -1.756(2) -8 1.02(5)	209.759(6) -0.405(10) a 0.03767(2) -0.965(4) -6 0.75(13) 0.48

^a From band contour simulation.

Table 3. Observed/calculated isotopic shifts (cm⁻¹).

from		118Sn		1	²⁰ Sn
H ₃ 116S	n ³⁵ Cl	-0.77/-	-0.706	-	-1.47/-1.390
H3116S	n ⁷⁹ Br	-0.91/-	-0.871	-	-1.76/-1.716
H ₃ 118S	n ⁸¹ Br			-	-0.85/-0.852
$H_3^{116}S$	nI	0.90/-	-0.897	-	-1.80/-1.768
H ₃ ¹¹⁶ S H ₃ ¹¹⁸ S	n ³⁵ Cl	$^{37}Cl - 7$.	782/-7.933		
H ₃ 118S	n ⁷⁹ Br	81 Br -1 .	92/-1.969		
$H_3^{3120}S$	n ⁷⁹ Br	81 Br -1 .	92/-1.975		
Stretch	ning force o	onstants (10^2Nm^{-1}		
SnCl	2.245	SnBr	1.942	SnI	1.592

H₃SnI

The spectrum of H₃SnI, Fig. 3, was most difficult to measure. Due to the smallness of 2B, ~ 0.075 cm⁻¹, with respect to the resolution available, ~ 0.04 cm⁻¹, the low vapor pressure at $0\,^{\circ}$ C, the unavoidable presence of residual water in the interferometer and the high relative intensity of hot bands, the spectrum is not as good as those of the lighter species are. Rotational J structure was however clearly evident in favorable regions of the P and R branch, where hot band peaks are "in phase" with those of v_3 . $^{\circ}$ P and $^{\circ}$ R peaks with $J'' \leq 80$ and 99 were assigned and subjected to the polynomial fit, Table I. The hot band $2v_3 - v_3$ was only identified by its Q branch, though it was included in the simulation.

K structure

Though K structure has not been resolved, the shape of the Q branches gives some indication for the size of α^A . By experience, the quantity $\alpha^A - \alpha^B$ is easily overestimated if determined from the shape of the Q branch because its low-frequency wing

may well bury weak hot bands. Therefore the α^A values obtained by band contour simulation, though small anyway, should be considered as upper limits. For the K correction of the a values from Table 1 it was assumed that the J peaks correspond to K=3 and the quantity $\alpha^A - \alpha^B$ is $\sim 5 \times 10^{-4}$. Thus, $5(5) \times 10^{-3}$ cm⁻¹ were added to the a coefficients to yield the v_0 values of Table 2.

4. Discussion

The v_3 fundamentals of the pilot stannyl halide species have been detected and rotationally resolved in their Far Infrared spectra. It turns out that the absorptions previously observed at 383 and 370 cm⁻¹ [3] could well be attributable to the v_3 fundamental of naturally abundant H₃SnCl. We have also made some measurements on natural material. Though no rotational structure could be resolved, some isotope shifts of Q branches which are listed in Table 3 could be measured. It is evident that these can be well reproduced by a model which treats H₃SnX as diatomic molecules. Therefore the quoted "diatomic" SnX force constant should be quite reliable. Similarly the centrifugal distortion constant D_I^0 calculated according to the diatomic approximation $D_J^0 = 4 B^3/\omega^2$ agrees within 3σ with the experimental values.

Rotational constants B_0 of H₃SnCl and H₃SnBr agree within their standard deviations with those of [5] and [6]. The slight B_0 difference for H₃SnI has an explanation. In the mw investigation of the 13 \leftarrow 12 and 14 \leftarrow 13 transitions, no distortion due to D_J^0 was observed, and this was fixed to zero. If an averaged

correction $+2D_J^0 (J+1)^2$ with $\bar{J} = 1/2 (12+13)$ is applied to B_0 , assuming $D_J^0 = 0.5 \times 10^{-8} \text{ cm}^{-1}$, an improved B_0 value, 0.0376165 cm⁻¹, is calculated. If D_J^0 is fixed to this value in the rovibrational analysis of v_3 , a smaller value, 0.037645 (15) is obtained, which is now closer than 2σ to the mw value. If the value resulting from the v_3 fit with D_J^0 constrained to zero, $B_0 = 0.037596$ (15), is compared with the mw value, even closer agreement is observed. Thus, we conclude that the high-J peaks employed in the least squares refinement are systematically blended. Assuming $\Delta D_J^0 = 0.25 \times 10^{-8}$, this systematic shift $\Delta v = 4 \Delta D_L^0 (J + 1)^3$ is of the order of 5×10^{-3} cm⁻¹ for J'' = 80.

The observed SnX stretching frequencies are at the upper end of the range quoted for methyl tin halides $(CH_3)_{4-n}SnX_n$, 383-331, 264-235 and $207-174 \text{ cm}^{-1}$ for X = Cl, Br, and I [16], but substantially higher than in (CH₃)₃SnX compounds (331, 234, and 189 cm⁻¹ [9]). The extrapolated v_3 frequency of H_3SnI , $\sim 80 \text{ cm}^{-1}$ [7], turns out to be immaterial. An interesting comparison of v₃ rovibrational parameters for the entire series H₃E^{IV}X with $E^{IV} = Si$, Ge, and Sn; X = Cl, Br, and I is now possible. This is set out in Table 4.

We were surprised to note how close the respective parameters of isobaric compounds with comparable mass ratios, $E^{IV}: X \cong X: E^{IV}$, are. Thus, H₃SiI and H₃SnCl are very similar, but different from H₃GeBr, though all three molecules are about isobaric. Similarly, H₃SiBr and H₃GeCl as well as H₃GeI and H₃SnBr are closely related pairs. The methyl halides are excluded from this comparison because they would correspond to H₃E^{IV}F species which are not considered here.

- [1] For Part XXXXVIII, see H. Bürger, R. Eujen, S. Cradock, L. Henry, and A. Valentin, J. Mol. Spectrosc., in the press.
- E. Amberger, Angew. Chem. 72, 78 (1960).
- [3] J. R. Webster, M. M. Millard, and W. L. Jolly, Inorg. Chem. **10**, 879 (1971).
- [4] J. M. Bellama and R. A. Gsell, Inorg. Nucl. Chem. Letters 7, 365 (1971).
- [5] L. C. Krisher, R. A. Gsell, and J. M. Bellama, J. Chem. Phys. 54, 2287 (1971).
- [6] S. N. Wolf, L. C. Krisher, and R. A. Gsell, J. Chem.
- Phys. **54**, 4605 (1971).
 [7] S. N. Wolf, L. C. Krisher, and R. A. Gsell, J. Chem. Phys. 55, 2106 (1971).
- [8] M. Betzel, H. Bürger, and P. Schulz, Z. Naturforsch. 39 a, 155 (1984).
- [9] R. J. H. Clark, A. G. Davies, and R. J. Puddephatt, J. Chem. Soc. (A) 1968, 1828.

Table 4. Comparison of rounded ground and $v_3 = 1$ excited state parameters of H₃E^{IV}X molecules (cm⁻¹; M in amu).

		$X = {}^{35}C1$	⁷⁹ Br	¹²⁷ I
H ₃ ²⁸ SiX	$M_{v_3^0} \\ x_{33}$	66 550.94 -2.10	110 430.76 -1.41	158 362.82 -1.10
[10-12]	B_0 $D_J^0 \times 10^7$ $\alpha_3^B \times 10^3$	0.2226 1.37 1.291	0.1442 0.63 0.658	0.1073 0.36 0.444
$H_3^{74}GeX$	$M_{v_3^0}$	112 422.93	156 306.59	204 248.98
[13]	$ \begin{array}{c} x_{33} \\ B_0 \\ D_J^0 \times 10^7 \\ \alpha_J^8 \times 10^3 \end{array} $	-1.55 0.1446 0.62 0.689	-0.77 0.0793 0.20 0.282	-0.56 0.0544 0.12 0.167
H ₃ ¹¹⁶ SnX	$M = v_3^0$	154 375.47	198 263.57	256 209.76
This work	B_0 $D_J^0 \times 10^7$ $\alpha_3^B \times 10^3$	-1.12 0.1104 0.36 0.478	-0.59 0.0567 0.10 0.176	-0.40 0.0376 0.06 0.096

The results obtained in the present study give a reliable picture of the nv_3 vibrational states for n=1, 2 and, in part, 3. The multiply excited nv_3 states have been shown to perturb rovibrational states involving other fundamentals if levels suited for interactions are close. Therefore the present analysis of the $n v_3$ states is of importance for forthcoming rovibrational studies of stannyl halides in other frequency regions.

Acknowledgement

Support by the Deutsche Forschungsgemeinschaft through SFB 42 and the Fonds der Chemie is gratefully acknowledged.

- [10] H. Bürger, J. Cichon, S. Dobos, R. Eujen, and P. Schulz, J. Mol. Spectrosc. 86, 298 (1981).
- [11] H. Bürger and G. Schippel, J. Mol. Spectrosc. 98, 199 (1983).
- [12] H. Bürger, S. Dobos, P. Schulz, and A. Ruoff, J. Mol. Spectrosc. 84, 478 (1980).
- [13] H. Bürger, K. Burczyk, R. Eujen, A. Rahner, and S. Cradock, J. Mol. Spectrosc. 97, 266 (1983).
- [14] J. Kauppinen, T. Kärkkäinen, and E. Kyrö, J. Mol. Spectrosc. 71, 15 (1978).
- [15] Lists of observed and calculated transition frequencies may be obtained from Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen, West Germany, on submission of the name of the authors, the literature reference and the registry Nr. IRD-10017.
- [16] E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York 1977.